الاكتشاف الساخرة ذات أهمية كبيرة في فهم المشاعر والآراء الحقيقية للناس.العديد من التقيمات عبر الإنترنت، مراجعات، تعليقات وسائل التواصل الاجتماعي، إلخ.لقد تم بالفعل إجراء العديد من الأبحاث بالفعل في هذا المجال، لكن معظم الباحثين درس تحليل الساركاز الإنجليزي مقارنة بالبحثية تتم في تحليل السخرية العربية بسبب تحديات اللغة العربية.في هذه الورقة، نقترح نهجا جديدا لتحسين اكتشاف السخرية العربية.يتم استخدام نهجنا تكبير البيانات، وكلمة السياق، ونموذج الغابات العشوائية للحصول على أفضل النتائج.كانت دقةنا في المهمة المشتركة بشأن السخرية والكشف عن المعنويات باللغة العربية 0.5189 ل F1-Saarcastic مثل المقياس الرسمي باستخدام DataSet Arsarcasmv2 المشترك (أبو فرحة، وآخرون، 2021).
Sarcasm detection is of great importance in understanding people's true sentiments and opinions. Many online feedbacks, reviews, social media comments, etc. are sarcastic. Several researches have already been done in this field, but most researchers studied the English sarcasm analysis compared to the researches are done in Arabic sarcasm analysis because of the Arabic language challenges. In this paper, we propose a new approach for improving Arabic sarcasm detection. Our approach is using data augmentation, contextual word embedding and random forests model to get the best results. Our accuracy in the shared task on sarcasm and sentiment detection in Arabic was 0.5189 for F1-sarcastic as the official metric using the shared dataset ArSarcasmV2 (Abu Farha, et al., 2021).
المراجع المستخدمة
https://aclanthology.org/
الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام ا
منذ إنشائها، أدت نماذج اللغة القائمة على المحولات إلى مكاسب أداء مثيرة للإعجاب عبر مهام معالجة لغات طبيعية متعددة. بالنسبة للعربية، يتم تحقيق النتائج الحالية من أحدث البيانات في معظم مجموعات البيانات بواسطة نموذج اللغة العربية. على الرغم من هذه التطو
تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات وم
تحليل السخرية وتحليل المعنويات هي مهام مهمة في فهم اللغة الطبيعية.السخرية هي نوع من التعبير حيث يتم تقليد قطبية المعنويات لعامل التدخل.في هذه الدراسة، استغلنا هذه العلاقة لتعزيز كلتا المهام من خلال اقتراح نهج تعليمي متعدد المهام باستخدام مزيج من الأش
تقدم هذه الورقة استراتيجيتنا لمعالجة المهمة المشتركة EACL WANLP-2021: السخرية والكشف عن المعنويات.يهدف أحد المهن الفرعية إلى تطوير نظام يحدد ما إذا كانت سقسقة عربية معينة ساخرة في الطبيعة أم لا، في حين أن الآخر يهدف إلى تحديد مشاعر سقسقة اللغة العربي