ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-proroun - تكبير البيانات للترجمة اليابانية إلى الإنجليزية

Zero-pronoun Data Augmentation for Japanese-to-English Translation

376   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بالنسبة للترجمة اليابانية إلى الإنجليزية، تشكل الضمائر الصفرية في اليابانية تحديا، نظرا لأن النموذج يحتاج إلى استنتاج النموذج وإنتاج الضمير المقابل في الجانب المستهدف من الجملة الإنجليزية.ومع ذلك، على الرغم من أن حل الضمائر الصفرية بالكامل غالبا ما تحتاج إلى سياق خطاب، في بعض الحالات، فإن السياق المحلي في غضون جملة يمنح أدلة على استنتاج الضمير الصفر.في هذه الدراسة، نقترح طريقة تكبير البيانات التي توفر إشارات تدريبية إضافية لنموذج الترجمة لتعلم الارتباطات بين السياق المحلي وضمائر الصفر.نظهر أن الطريقة المقترحة تعمل بشكل كبير على تحسين دقة ترجمة صفر الضمير مع تجارب ترجمة الجهاز في مجال المحادثة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب ارات مصدر جديدة من نموذج لغة ملثم، ثم أخذ عينات من عبارة مستهدفة محاذاة محاذاة من خلال الإشارة إلى أن نموذج لغة الترجمة يمكن تفسيره على أنه نموذج سببي هيكلي Gumbel-Max (Oberst و Sontag، 2019).مقارنة بالعمل السابق، تأخذ طريقتنا السياق ومحاذاة في الاعتبار للحفاظ على التماثل بين المصدر والتسلسلات المستهدفة.تجارب على iwslt'15 الإنجليزية → الفيتنامية، WMT'17 الإنجليزية → الألمانية، WMT'18 English → التركية، و WMT'19 قوية الإنجليزية → معرض الفرنسية أن الطريقة يمكن أن تحسن أداء الترجمة والخلفية والترجمة قوية.
تصف هذه الورقة نظام NAIST لمهمة الترجمة المركزة للترجمة الفورية إلى الإنجليزية إلى اليابانية في حملة تقييم IWSLT 2021.يعتمد تقديمنا الأساسي على الترجمة الآلية العصبية WAIL-K مع تقطير المعرفة على مستوى التسلسل لتشجيع الترجمة الحرفية.
تعزز البيانات، التي تشير إلى معالجة المدخلات (على سبيل المثال، إضافة ضوضاء عشوائية، اخفاء أجزاء محددة) لتكبير مجموعة البيانات، تم اعتمادها على نطاق واسع في تعلم الجهاز.تعمل معظم تقنيات تكبير البيانات على إدخال واحد، مما يحد من تنوع كوربوس التدريب.في هذه الورقة، نقترح تقنية بسيطة ولكنها فعالة لتكبير البيانات للترجمة الآلية العصبية، mixseq، والتي تعمل على مدخلات متعددة وأهدافها المقابلة لها.على وجه التحديد، نقوم بشكل عشوائي بتحديد تسلسل مدخلتين بشكل عشوائي، وتسلسلها معا كإدخال أطول كما أن تسلسل المستحضرات المستهدفة المقابلة للهدف الموسع، ونماذج القطار على مجموعة البيانات المستعملة.تثبت التجارب في تسع مهام ترجمة آلية أن هذه الطريقة Asimple تعزز الخط الأساس عن طريق هامش غير تافهة.يمكن دمج طريقةنا مع طرق تكبير البيانات المستندة إلى الإدخال الفردي للحصول على مزيد من التحسينات.
في هذه الورقة، نحقق في عوامل القيادة وراء التسلسل، وهي طريقة بسيطة ولكنها فعالة من البيانات للترجمة الآلية العصبية منخفضة الموارد.تشير تجاربنا إلى أن سياق الخطاب غير مرجح هو سبب تحسين تسلسل بلو من قبل حوالي +1 عبر أربع أزواج لغوية.بدلا من ذلك، نوضح أ ن التحسن يأتي من ثلاثة عوامل أخرى لا علاقة لها بالحبال: تنوع السياق، وتنوع الطول، و (إلى حد أقل) يتحول الموقف.
غالبا ما يتحلل ترجمة لغة الإشارة (SLT) في التعرف على الفيديو إلى اللمعان والترجمة النصية إلى النص، حيث يكون اللمعان سلسلة من الكلمات اللغوية الموضحة باللغة المنطوقة بالترتيب الذي يتم فيه توقيعه.نحن نركز هنا على الترجمة اللامع إلى النص، والتي نعلمها ك مشكلة ترجمة آلية منخفضة الموارد (NMT).ومع ذلك، على عكس المورد المنخفض التقليدي NMT، تختلف الترجمة من اللمعان إلى النص لأن أزواج النص اللامع في كثير من الأحيان تحتوي على تداخل معجمي أعلى وانخفاض التداخل النحوي أقل من أزواج اللغات المنطوقة.نستفصل هذا التداخل المعجمي والتعامل مع الاختلاف النحوي عن طريق اقتراح اثنين من الاستدلال المستندة إلى القواعد التي تولد أزواج نصية متوازية من النصوص الزائفة من نص اللغة المنطوقة غير المنطوقة.من خلال التدريب المسبق على هذه البيانات الاصطناعية، نحسن الترجمة من لغة الإشارة الأمريكية (ASL) إلى لغة الإشارة الإنجليزية والألمانية إلى الألمانية بنسبة تصل إلى 3.14 و 2.20 بلو، على التوالي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا