تصف الورقة توضيحات TENTRANS إلى المهمة المشتركة ل WMT 2021 المشتركة.نستكشف تدريب مجموعة متنوعة من نماذج محولات الصغار الأصغر باستخدام إعداد المعلمين - طالب.يتم تدريب نموذجنا من خلال منصة تدريب متعددة اللغات المتطورة ذاتية اللغات ذاتية اللغويةونحن نطلق أيضا مجموعة أدوات الاستدلال عالية الأداء مفتوح المصدر لنماذج المحولات والمكتب في C ++ بالكامل.يتم بناء جميع التحسينات الإضافية على رأس محرك الاستدلال بما في ذلك التخزين المؤقت للانتباه، نواة الانصهار، والتوقف المبكر، والعديد من التحسينات الأخرى.في عمليات التقديمات الخاصة بنا، يمكن أن يترجم الأسرع النظام الأسرع أكثر من 22000 رموز في الثانية مع TESLA P4 واحدة مع الحفاظ على 38.36 بلو على EN-DE NEWSTEST2019.تتوفر نماذجنا المدربة ومزيد من التفاصيل في أمثلة المنافسة التي تخدمها Tentrans.
The paper describes the TenTrans's submissions to the WMT 2021 Efficiency Shared Task. We explore training a variety of smaller compact transformer models using the teacher-student setup. Our model is trained by our self-developed open-source multilingual training platform TenTrans-Py. We also release an open-source high-performance inference toolkit for transformer models and the code is written in C++ completely. All additional optimizations are built on top of the inference engine including attention caching, kernel fusion, early-stop, and several other optimizations. In our submissions, the fastest system can translate more than 22,000 tokens per second with a single Tesla P4 while maintaining 38.36 BLEU on En-De newstest2019. Our trained models and more details are available in TenTrans-Decoding competition examples.
المراجع المستخدمة
https://aclanthology.org/
حقق محول ومتغيراتها نجاحا كبيرا في معالجة اللغة الطبيعية.نظرا لأن طرازات المحولات ضخمة الحجم، فإن خدمة هذه النماذج هي تحديا للتطبيقات الصناعية الحقيقية.في هذه الورقة، نقترح، مكتبة الاستدلال عالية الكفاءة للنماذج في عائلة المحولات.يتضمن سلسلة من تقنيا
في هذه الورقة، نقدم طلبنا إلى مهمة المقاييس المشتركة: Robleurt (تحسين تدريب Bleurt).بعد التحقيق في التطورات الأخيرة المتمثلة في المقاييس التدريبية التدريبية، نستنتج عدة جوانب ذات أهمية حيوية للحصول على نموذج متري أداء جيدا من قبل: 1) الاستفادة المشتر
توضح هذه الورقة تقديم TENTRANS إلى مهمة مشتركة من Translation Translation منخفضة اللغات WMT21 لأزواج اللغة الرومانسية.تركز هذه المهمة على تحسين جودة الترجمة من الكاتالونية إلى Occitan والرومانية والإيطالية، بمساعدة لغات الموارد ذات الصلة ذات الصلة.نح
يقوم هذا البحث على دراسة اخر التطورات والاحداث في مجال الحوسبة عالية الأداء، والتي تقوم على توفير البنية التحتية والبيئة المناسبة والمستلزمات العتادية والبرمجية، مما يسمح بحل المسائل والرياضية والبيولوجية وتدريب نماذج الذكاء الاصطناعي والقيام بمحاكاة
نقدم مجموعة أدوات مفتوحة المصدر لمعالجة اللغة الطبيعية الدنماركية، مما يتيح سهولة الوصول إلى أحدث التطورات الدنماركية ل NLP.يتميز مجموعة الأدوات بوظائف المجمع لتحميل النماذج ومجموعات البيانات بطريقة موحدة باستخدام أطر NLP لجهة خارجية.تم تطوير مجموعة