ﻻ يوجد ملخص باللغة العربية
Proposals for nonlinear extenstions of quantum mechanics are discussed. Two different concepts of mixed state for any nonlinear version of quantum theory are introduced: (i) >genuine mixture< corresponds to operational mixing of different ensembles, and (ii) a mixture described by single density matrix without having a canonical operational possibility to pick out its specific convex decomposition is called here an >elementary mixture<. Time evolution of a class of nonlinear extensions of quantum mechanics is introduced. Evolution of an elementary mixture cannot be generally given by evolutions of components of its arbitrary convex decompositions. The theory is formulated in a geometric form: It can be considered as a version of Hamiltonian mechanics on infinite dimensional space of density matrices. A quantum interpretation of the theory is sketched.
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase
Possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demo
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is