ﻻ يوجد ملخص باللغة العربية
For every NAND formula of size N, there is a bounded-error N^{1/2+o(1)}-time quantum algorithm, based on a coined quantum walk, that evaluates this formula on a black-box input. Balanced, or ``approximately balanced, NAND formulas can be evaluated in O(sqrt{N}) queries, which is optimal. It follows that the (2-o(1))-th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
Single crystals of iridates are usually grown by a flux method well above the boiling point of the SrCl2 solvent. This leads to non-equilibrium growth conditions and dramatically shortens the lifetime of expensive Pt crucibles. Here, we report the gr
The O(N) model in 1+1 dimensions presents some features in common with Yang-Mills theories: asymptotic freedom, trace anomaly, non-petrurbative generation of a mass gap. An analytical approach to determine the termodynamical properties of the O(3) mo
Let $R = k[w, x_1,..., x_n]/I$ be a graded Gorenstein Artin algebra . Then $I = ann F$ for some $F$ in the divided power algebra $k_{DP}[W, X_1,..., X_n]$. If $RI_2$ is a height one idealgenerated by $n$ quadrics, then $I_2 subset (w)$ after a possib
We present a quantum LDPC code family that has distance $Omega(N^{3/5}/operatorname{polylog}(N))$ and $tildeTheta(N^{3/5})$ logical qubits. This is the first quantum LDPC code construction which achieves distance greater than $N^{1/2} operatorname{po