ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure of the O(N) Model in 1+1 Dimensions

190   0   0.0 ( 0 )
 نشر من قبل Francesco Giacosa
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The O(N) model in 1+1 dimensions presents some features in common with Yang-Mills theories: asymptotic freedom, trace anomaly, non-petrurbative generation of a mass gap. An analytical approach to determine the termodynamical properties of the O(3) model is presented and compared to lattice results. Here the focus is on the pressure: it is shown how to derive the pressure in the CJT formalism at the one-loop level by making use of the auxiliary field method. Then, the pressure is compared to lattice results.



قيم البحث

اقرأ أيضاً

By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS Y-breaking parameter~$deltaepsilon$. This quantity was vigorously studied recently by Fujimori et al. using a semi-classical approximation based on the bion, motivated by a possible semi-classical picture on the infrared renormalon. In our calculation, we find that the parameter~$deltaepsilon$ receives renormalization and, after this renormalization, the vacuum energy becomes ultraviolet finite. To the next-to-leading order of the $1/N$ expansion, we find that the vacuum energy normalized by the radius of the~$S^1$, $R$, $RE(deltaepsilon)$ behaves as inverse powers of~$Lambda R$ for~$Lambda R$ small, where $Lambda$ is the dynamical scale. Since $Lambda$ is related to the renormalized t~Hooft coupling~$lambda_R$ as~$Lambdasim e^{-2pi/lambda_R}$, to the order of the $1/N$ expansion we work out, the vacuum energy is a purely non-perturbative quantity and has no well-defined weak coupling expansion in~$lambda_R$.
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supers ymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.
156 - Paul Romatschke 2019
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 d imensions, which is analytically solvable at finite temperature $T$ for all couplings $lambda$ in the large N limit. I find that the entropy density monotonically decreases from the Stefan-Boltzmann limit at $lambda=0$ to exactly 4/5 of the Stefan-Boltzmann limit at $lambda=infty$. Calculating the retarded energy-momentum tensor correlator in the scalar channel at $lambda=infty$, I find that it has two logarithmic branch cuts originating at $omega=pm 4 T ln frac{1+sqrt{5}}{2}$, but no singularities in the whole complex frequency plane. I show that the ratio 4/5 and the location of the branch points both are universal within a large class of bosonic CFTs in 2+1 dimensions.
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b oundary conditions. In our large~$N$ limit, the combination $Lambda R$, where $Lambda$ is the dynamical scale and $R$~is the $S^1$ radius, is kept fixed (we set $Lambda Rll1$ so that the perturbative expansion with respect to the coupling constant at the mass scale~$1/R$ is meaningful). We extract the perturbative part from the large-$N$ expression of the gluon condensate and obtain the corresponding Borel transform~$B(u)$. For~$mathbb{R}times S^1$, we find that the Borel singularity at~$u=2$, which exists in the system on the uncompactified~$mathbb{R}^2$ and corresponds to twice the minimal bion action, disappears. Instead, an unfamiliar renormalon singularity emph{emerges/} at~$u=3/2$ for the compactified space~$mathbb{R}times S^1$. The semi-classical interpretation of this peculiar singularity is not clear because $u=3/2$ is not dividable by the minimal bion action. It appears that our observation for the system on~$mathbb{R}times S^1$ prompts reconsideration on the semi-classical bion picture of the infrared renormalon.
We construct a simple model for describing the hadron-quark crossover transition by using lattice QCD (LQCD) data in the 2+1 flavor system, and draw the phase diagram in the 2+1 and 2+1+1 flavor systems through analyses of the equation of state (EoS) and the susceptibilities. In the present hadron-quark crossover (HQC) model is successful in reproducing LQCD data on the EoS and the flavor susceptibilities.We define the hadron-quark transition temperature. For the 2+1 flavor system, the transition line thus obtained is almost identical in planes that are created by temperature and the chemical potential for the baryon-number(B), the isospin(I), the hypercharge(Y), when the chemical potentials are smaller than 250 MeV. This BIY approximate equivalence persists also in the 2+1+1 flavor system. We plot the phase diagram also in planes that are created by temperature and the chemical potential for u,d,s quark number in order to investigate flavor dependence of transition lines. In the 2+1+1 flavor system, c quark does not affect the 2+1 flavor subsystem composed of u, d, s. The flavor off-diagonal susceptibilities are good indicators to see how hadrons survive as T increases, since the independent quark model hardly contributes to them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا