ﻻ يوجد ملخص باللغة العربية
Measures with values in the set of sesquilinear forms on a subspace of a Hilbert space are of interest in quantum mechanics, since they can be interpreted as observables with only a restricted set of possible measurement preparations. In this paper, we consider the question under which conditions such a measure extends to an operator valued measure, in the concrete setting where the measure is defined on the Borel sets of the interval $[0,2pi)$ and is covariant with respect to shifts. In this case, the measure is characterized with a single infinite matrix, and it turns out that a basic sufficient condition for the extensibility is that the matrix be a Schur multiplier. Accordingly, we also study the connection between the extensibility problem and the theory of Schur multipliers. In particular, we define some new norms for Schur multipliers.
We introduce several notions of random positive operator valued measures (POVMs), and we prove that some of them are equivalent. We then study statistical properties of the effect operators for the canonical examples, obtaining limiting eigenvalue di
We show, using either Fock space techniques or Macdonald difference operators, that certain symplectic and orthogonal analogues of Okounkovs Schur measure are determinantal with kernels given by explicit double contour integrals. We give two applicat
Quantum resource theories provide a diverse and powerful framework for extensively studying the phenomena in quantum physics. Quantum coherence, a quantum resource, is the basic ingredient in many quantum information tasks. It is a subject of broad a
The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences x and y that converge to 0, there exists a compact operator A with eigenvalue list y and diagonal sequence x i
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite