ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized Rotation of Atoms From Photons with Orbital Angular Momentum

137   0   0.0 ( 0 )
 نشر من قبل Kristian Helmerson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.



قيم البحث

اقرأ أيضاً

Atoms trapped in a red detuned retro-reflected Laguerre-Gaussian beam undergo orbital motion within rings whose centers are on the axis of the laser beam. We determine the wave functions, energies and degeneracies of such quantum rotors (QRs), and th e microwave transitions between the energy levels are elucidated. We then show how such QR atoms can be used as high-accuracy rotation sensors when the rings are singly-occupied.
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglemen t in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
The self-imaging, or Talbot Effect, that occurs with the propagation of periodically structured waves has enabled several unique applications in optical metrology, image processing, data transmission, and matter-wave interferometry. In this work, we report on the first demonstration of a Talbot Effect with single photons prepared in a lattice of orbital angular momentum (OAM) states. We observe that upon propagation, the wavefronts of the single photons manifest self-imaging whereby the OAM lattice intensity profile is recovered. Furthermore, we show that the intensity at fractional Talbot distances is indicative of a periodic helical phase structure corresponding to a lattice of OAM states. This phenomenon is a powerful addition to the toolbox of orbital angular momentum and spin-orbit techniques that have already enabled many recent developments in quantum optics.
The optical spin-orbit coupling occurring in a suitably patterned nonuniform birefringent plate known as `q-plate allows entangling the polarization of a single photon with its orbital angular momentum (OAM). This process, in turn, can be exploited f or building a bidirectional spin-OAM interface, capable of transposing the quantum information from the spin to the OAM degree of freedom of photons and textit{vice versa}. Here, we experimentally demonstrate this process by single-photon quantum tomographic analysis. Moreover, we show that two-photon quantum correlations such as those resulting from coalescence interference can be successfully transferred into the OAM degree of freedom.
The Einstein Podolsky Rosen (EPR) entangled quantum state is of special importance not only for fundamental research in quantum mechanics, but also for information processing in the field of quantum information. Previous EPR entangled state demonstra tions were constructed with photons of equal phase wave fronts. More complex scenarios with structured wave fronts have not been investigated. Here, we report the first experimental demonstration of EPR entanglement for photon pairs carrying orbital angular momentum (OAM) information, resulting in an OAM embedded EPR entangled state. We measured the dynamics of the dependence of the ghost interference on relative phase under projection. In addition, the reconstructed matrix in the OAM and EPR position momentum spaces shows a specific hyper entanglement in high dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا