ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Angular Momentum embedded Einstein Podolsky Rosen Entanglement Generated from Cold Atoms

93   0   0.0 ( 0 )
 نشر من قبل Dongsheng Ding
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Einstein Podolsky Rosen (EPR) entangled quantum state is of special importance not only for fundamental research in quantum mechanics, but also for information processing in the field of quantum information. Previous EPR entangled state demonstrations were constructed with photons of equal phase wave fronts. More complex scenarios with structured wave fronts have not been investigated. Here, we report the first experimental demonstration of EPR entanglement for photon pairs carrying orbital angular momentum (OAM) information, resulting in an OAM embedded EPR entangled state. We measured the dynamics of the dependence of the ghost interference on relative phase under projection. In addition, the reconstructed matrix in the OAM and EPR position momentum spaces shows a specific hyper entanglement in high dimension.



قيم البحث

اقرأ أيضاً

Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c haracterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
100 - R. Inoue , N. Kanai , T. Yonehara 2006
Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, textit{et al.}, Phys. Rev. Lett. textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states we re correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.
60 - Ashok Kumar , Gaurav Nirala , 2020
Spatial entanglement is at the heart of quantum enhanced imaging applications and high-dimensional quantum information protocols. In particular, for imaging and sensing applications, quantum states with a macroscopic number of photons are needed to p rovide a real advantage over the classical state-of-the-art. We demonstrate the Einstein-Podolsky-Rosen (EPR) paradox in its original position and momentum form with bright twin beams of light by showing the presence of EPR spatial (position-momentum) entanglement. An electron-multiplying charge-coupled-device camera is used to record images of the bright twin beams in the near and far field regimes to achieve an apparent violation of the uncertainty principle by more than an order of magnitude. We further show that the presence of quantum correlations in the spatial and temporal degrees of freedom leads to spatial squeezing between the spatial fluctuations of the bright twin beams in both the near and far fields. This provides another verification of the spatial entanglement and points to the presence of hyperentanglement in the bright twin beams.
This Colloquium examines the field of the EPR Gedankenexperiment, from the original paper of Einstein, Podolsky and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discre
A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا