ﻻ يوجد ملخص باللغة العربية
Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we characterize the probability distribution P(D). Similar results are obtained for the rescaled N-th root of the determinant, called G-concurrence. We show that in the limit $Ntoinfty$ this quantity becomes concentrated at a single point G=1/e. The position of the concentration point changes if one consider an arbitrary N x K bipartite system, in the joint limit $N,Ktoinfty$, K/N fixed.
We propose an explicit protocol for the deterministic transformations of bipartite pure states in any dimension using deterministic transformations in lower dimensions. As an example, explicit solutions for the deterministic transformations of $3otim
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on
We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states. We find that if a given three-qubit pure state has the minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality.
In this paper, we investigate a characterization of Quantum Mechanics by two physical principles based on general probabilistic theories. We first give the operationally motivated definition of the physical equivalence of states and consider the prin
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p