ﻻ يوجد ملخص باللغة العربية
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with care and may not even exist in some cases. Here we layout the quantum probabilistic formulation in terms of von Neumann algebras, and outline conditions (non-demolition properties) under which filtering may occur.
We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bo
Information on quantum systems can be obtained only when they are open (or opened) in relation to a certain environment. As a matter of fact, realistic open quantum systems appear in very different shape. We sketch the theoretical description of open
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$
We derive a sequence of measures whose corresponding Jacobi matrices have special properties and a general mapping of an open quantum system onto 1D semi infinite chains with only nearest neighbour interactions. Then we proceed to use the sequence of
The dynamics of an open quantum system with balanced gain and loss is not described by a PT-symmetric Hamiltonian but rather by Lindblad operators. Nevertheless the phenomenon of PT-symmetry breaking and the impact of exceptional points can be observ