ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-efficiency quantum non-demolition single photon number resolving detector

80   0   0.0 ( 0 )
 نشر من قبل Bill Munro
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measurement with high efficiency ($sim$99%) using less than 1600 atoms embedded in a dielectric waveguide.



قيم البحث

اقرأ أيضاً

The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of pho ton-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications.
Superconducting nanostrip photon detectors have been used as single photon detectors, which can discriminate only photons presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical quantum information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.
Homodyne detection is considered as a way to improve the efficiency of communication near the single-photon level. The current lack of commercially available {it infrared} photon-number detectors significantly reduces the mutual information accessibl e in such a communication channel. We consider simulating direct detection via homodyne detection. We find that our particular simulated direct detection strategy could provide limited improvement in the classical information transfer. However, we argue that homodyne detectors (and a polynomial number of linear optical elements) cannot simulate photocounters arbitrarily well, since otherwise the exponential gap between quantum and classical computers would vanish.
The Wigner quasiprobability distribution of a narrowband single-photon state was reconstructed by quantum state tomography using photon-number-resolving measurements with transition-edge sensors (TES) at system efficiency 58(2)%. This method makes no assumptions on the nature of the measured state, save for the limitation on photon flux imposed by the TES. Negativity of the Wigner function was observed in the raw data without any inference or correction for decoherence.
Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous tr eatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro textit{et al.} Phys. Rev. A textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length $200 mumathrm{m}$ in single-crystal diamond containing a dilute ensemble of NV$^-$ of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا