ترغب بنشر مسار تعليمي؟ اضغط هنا

High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

268   0   0.0 ( 0 )
 نشر من قبل Brice Calkins
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications.



قيم البحث

اقرأ أيضاً

Integration is currently the only feasible route towards scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such de vices. We demonstrate an integrated photon-number resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to 5 photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2 pm 0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.
We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measu rement with high efficiency ($sim$99%) using less than 1600 atoms embedded in a dielectric waveguide.
Superconducting nanostrip photon detectors have been used as single photon detectors, which can discriminate only photons presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical quantum information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.
We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.
Photonic processors are pivotal for both quantum and classical information processing tasks using light. In particular, linear optical quantum information processing requires both largescale and low-loss programmable photonic processors. In this pape r, we report the demonstration of the largest universal quantum photonic processor to date: a low-loss, 12-mode fully tunable linear interferometer with all-to-all coupling based on stoichiometric silicon nitride waveguides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا