ﻻ يوجد ملخص باللغة العربية
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in [E. Farhi, et al., arXiv:quant-ph/0208135]. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H(tau) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H(tau) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shors algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations in
Designing proper time-dependent control fields for slowly varying the system to the ground state that encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations in real applications demand us to accel
We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard
We propose a method to speed up the quantum adiabatic algorithm using catalysis by many-body delocalization. This is applied to random-field antiferromagnetic Ising spin models. The algorithm is catalyzed in such a way that the evolution approximates
Motivated by the quantum adiabatic algorithm (QAA), we consider the scaling of the Hamiltonian gap at quantum first order transitions, generally expected to be exponentially small in the size of the system. However, we show that a quantum antiferroma