ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing adiabatic quantum pathways via a learning algorithm

138   0   0.0 ( 0 )
 نشر من قبل Xiaodong Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing proper time-dependent control fields for slowly varying the system to the ground state that encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations in real applications demand us to accelerate the evolution so that the adiabatic errors can be prevented from accumulation. Here, by treating this trade-off task as a multiobjective optimization problem, we propose a gradient-free learning algorithm with pulse smoothing technique to search optimal adiabatic quantum pathways and apply it to the Landau-Zener Hamiltonian and Grover search Hamiltonian. Numerical comparisons with a linear schedule, local adiabatic theorem induced schedule, and gradient-based algorithm searched schedule reveal that the proposed method can achieve significant performance improvements in terms of the adiabatic time and the instantaneous ground-state population maintenance. The proposed method can be used to solve more complex and real adiabatic quantum computation problems.



قيم البحث

اقرأ أيضاً

We develop new protocols for high-fidelity single qubit gates that exploit and extend theoretical ideas for accelerated adiabatic evolution. Our protocols are compatible with qubit architectures with highly isolated logical states, where traditional approaches are problematic; a prime example are superconducting fluxonium qubits. By using an accelerated adiabatic protocol we can enforce the desired adiabatic evolution while having gate times that are comparable to the inverse adiabatic energy gap (a scale that is ultimately set by the amount of power used in the control pulses). By modelling the effects of decoherence, we explore the tradeoff between speed and robustness that is inherent to shortcuts-to-adiabaticity approaches.
105 - Austin Gilliam , Marco Pistoia , 2020
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. I n this paper, we introduce an optimization of the inversion-by-the-mean step of the algorithm. This optimization serves two purposes: from a practical perspective, it can lead to a performance improvement; from a theoretical one, it leads to a novel interpretation of the actual nature of this step. This step is a reflection, which is realized by (a) cancelling the superposition of a general state to revert to the original all-zeros state, (b) flipping the sign of the amplitude of the all-zeros state, and finally (c) reverting back to the superposition state. Rather than canceling the superposition, our approach allows for going forward to another state that makes the reflection easier. We validate our approach on set and array search, and confirm our results experimentally on real quantum hardware.
113 - Austin Gilliam , Marco Pistoia , 2020
Amplitude Amplification -- a key component of Grovers Search algorithm -- uses an iterative approach to systematically increase the probability of one or multiple target states. We present novel strategies to enhance the amplification procedure by pa rtitioning the states into classes, whose probabilities are increased at different levels before or during amplification. The partitioning process is based on the binomial distribution. If the classes to which the search target states belong are known in advance, the number of iterations in the Amplitude Amplification algorithm can be drastically reduced compared to the standard version. In the more likely case in which the relevant classes are not known in advance, their selection can be configured at run time, or a random approach can be employed, similar to classical algorithms such as binary search. In particular, we apply this method in the context of our previously introduced Quantum Dictionary pattern, where keys and values are encoded in two separate registers, and the value-encoding method is independent of the type of superposition used in the key register. We consider this type of structure to be the natural setup for search. We confirm the validity of our new approach through experimental results obtained on real quantum hardware, the Honeywell System Model H0 trapped-ion quantum computer.
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in [E. Farhi, et al., arXiv:quant-ph/0208135]. The algorithm is applied to a random binary optimization problem (a version of the 3-Sa tisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H(tau) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H(tau) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shors algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations in dicate that the running time grows only quadratically with the number of qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا