ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror

64   0   0.0 ( 0 )
 نشر من قبل Juergen Eschner
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A distant mirror leads to a vacuum-induced level shift in a laser-excited atom. This effect has been measured with a single mirror 25 cm away from a single, trapped barium ion. This dispersive action is the counterpart to the mirrors dissipative effect, which has been shown earlier to effect a change in the ions spontaneous decay [J. Eschner et al., Nature 413, 495-498 (2001)]. The experimental data are well described by 8-level optical Bloch equations which are amended to take into account the presence of the mirror according to the model in [U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002)]. Observed deviations from simple dispersive behavior are attributed to multi-level effects.



قيم البحث

اقرأ أيضاً

Using a single trapped barium ion we have developed an rf spectroscopy technique to measure the ratio of the off-resonant vector ac Stark effect (or light shift) in the 6S_{1/2} and 5D_{3/2} states to 0.1% precision. We find R = Delta_S / Delta_D = - 11.494(13) at 514.531 nm where Delta_{S,D} are the light shifts of the m = +/- 1/2 splittings due to circularly polarized light. Comparison of this result with an ab initio calculation of R would yield a new test of atomic theory. By appropriately choosing an off-resonant light shift wavelength one can emphasize the contribution of one or a few dipole matrix elements and precisely determine their values.
We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying me soscopic entanglement between the two systems and to measure their interaction with high precision. As a particular example we consider a single $^{87}$Rb atom and a small Bose-Einstein condensate controlled by a single $^{171}$Yb$^+$ ion. We calculate inter-well coupling rates reaching hundreds of Hz, while the state dependence amounts to tens of Hz for plausible values of the currently unknown s-wave scattering length between the atom and the ion. The analysis shows that it is possible to induce either the self-trapping or the tunneling regime, depending on the internal state of the ion. This enables the generation of large scale ion-atomic wavepacket entanglement within current technology.
We investigate the emission of single photons from CdSe/CdS dot-in-rods which are optically trapped in the focus of a deep parabolic mirror. Thanks to this mirror, we are able to image almost the full 4$pi$ emission pattern of nanometer-sized element ary dipoles and verify the alignment of the rods within the optical trap. From the motional dynamics of the emitters in the trap we infer that the single-photon emission occurs from clusters comprising several emitters. We demonstrate the optical trapping of rod-shaped quantum emitters in a configuration suitable for efficiently coupling an ensemble of linear dipoles with the electromagnetic field in free space.
We report adiabatic passage experiments with a single trapped $^{40}$Ca$^+$ ion. By applying a frequency chirped laser pulse with a Gaussian amplitude envelope we reach a transfer efficiency of 0.990(10) on an optical transition from the electronic g round state S$_{1/2}$ to the metastable state D$_{5/2}$. This transfer method is shown to be insensitive to the accurate setting of laser parameters, and therefore is suitable as a robust tool for ion based quantum computing.
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and t he steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا