ترغب بنشر مسار تعليمي؟ اضغط هنا

Unity gain and non-unity gain quantum teleportation

87   0   0.0 ( 0 )
 نشر من قبل Warwick Bowen
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate continuous variable quantum teleportation. We discuss the methods presently used to characterize teleportation in this regime, and propose an extension of the measures proposed by Grangier and Grosshans cite{Grangier00}, and Ralph and Lam cite{Ralph98}. This new measure, the gain normalized conditional variance product $mathcal{M}$, turns out to be highly significant for continuous variable entanglement swapping procedures, which we examine using a necessary and sufficient criterion for entanglement. We elaborate on our recent experimental continuous variable quantum teleportation results cite{Bowen03}, demonstrating success over a wide range of teleportation gains. We analyze our results using fidelity; signal transfer, and the conditional variance product; and a measure derived in this paper, the gain normalized conditional variance product.



قيم البحث

اقرأ أيضاً

We propose and experimentally demonstrate an optimal non-unity gain Gaussian scheme for partial measurement of an unknown coherent state that causes minimal disturbance of the state. The information gain and the state disturbance are quantified by th e noise added to the measurement outcomes and to the output state, respectively. We derive the optimal trade-off relation between the two noises and we show that the trade-off is saturated by non-unity gain teleportation. Optimal partial measurement is demonstrated experimentally using a linear optics scheme with feed-forward.
We consider different properties of small open quantum systems coupled to an environment and described by a non-Hermitian Hamilton operator. Of special interest is the non-analytical behavior of the eigenvalues in the vicinity of singular points, the so-called exceptional points (EPs), at which the eigenvalues of two states coalesce and the corresponding eigenfunctions are linearly dependent from one another. The phases of the eigenfunctions are not rigid in approaching an EP and providing therewith the possibility to put information from the environment into the system. All characteristic properties of non-Hermitian quantum systems hold true not only for natural open quantum systems that suffer loss due to their embedding into the continuum of scattering wavefunctions. They appear also in systems coupled to different layers some of which provide gain to the system. Thereby gain and loss, respectively, may be fixed inside every layer, i.e. characteristic of it.
We present a quantum master equation describing a Bose-Einstein condensate with particle loss on one lattice site and particle gain on the other lattice site whose mean-field limit is a non-Hermitian PT-symmetric Gross-Pitaevskii equation. It is show n that the characteristic properties of PT-symmetric systems, such as the existence of stationary states and the phase shift of pulses between two lattice sites, are also found in the many-particle system. Visualizing the dynamics on a Bloch sphere allows us to compare the complete dynamics of the master equation with that of the Gross-Pitaevskii equation. We find that even for a relatively small number of particles the dynamics are in excellent agreement and the master equation with balanced gain and loss is indeed an appropriate many-particle description of a PT-symmetric Bose-Einstein condensate.
52 - C. DHelon , M.R. James 2005
This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and al gebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.
A measurement is deemed successful, if one can maximize the information gain by the measurement apparatus. Here, we ask if quantum coherence of the system imposes a limitation on the information gain during quantum measurement. First, we argue that t he information gain in a quantum measurement is nothing but the coherent information or the distinct quantum information that one can send from the system to apparatus. We prove that the maximum information gain from a pure state, using a mixed apparatus is upper bounded by the initial coherence of the system. Further, we illustrate the measurement scenario in the presence of environment. We argue that the information gain is upper bounded by the entropy exchange between the system and the apparatus. Also, to maximize the information gain, both the initial coherence of the apparatus, and the final entanglement between the system and apparatus should be maximum. Moreover, we find that for a fixed amount of coherence in the final apparatus state the more robust apparatus is, the more will be the information gain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا