ﻻ يوجد ملخص باللغة العربية
Entanglement is a powerful resource for processing quantum information. In this context pure, maximally entangled states have received considerable attention. In the case of bipartite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell states, the singlet Bell-state, has the additional property of being antisymmetric with respect to particle exchange. In this contribution we discuss possible generalizations of this antisymmetric Bell-state to cases with more than two particles and with single-particle Hilbert spaces involving more than two dimensions. We review basic properties of these totally antisymmetric states. Among possible applications of this class of states we analyze a new quantum key sharing protocol and methods for comparing quantum states.
We give an introduction to the theory of multi-partite entanglement. We begin by describing the coordinate system of the field: Are we dealing with pure or mixed states, with single or multiple copies, what notion of locality is being used, do we aim
The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the cumulative distribution of those m
We implement a Quantum Autoencoder (QAE) as a quantum circuit capable of correcting Greenberger-Horne-Zeilinger (GHZ) states subject to various noisy quantum channels : the bit-flip channel and the more general quantum depolarizing channel. The QAE s
We show that spin squeezing criteria commonly used for entanglement detection can be erroneous, if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further
Combining quantum information theory with thermodynamics unites 21st-century technology with 19th-century principles. The union elucidates the spread of information, the flow of time, and the leveraging of energy. This thesis contributes to the theor