ﻻ يوجد ملخص باللغة العربية
We show that spin squeezing criteria commonly used for entanglement detection can be erroneous, if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tri-partite entanglement in a spin squeezed atomic ensemble.
We give an introduction to the theory of multi-partite entanglement. We begin by describing the coordinate system of the field: Are we dealing with pure or mixed states, with single or multiple copies, what notion of locality is being used, do we aim
The Mermin inequality provides a criterion for experimentally ruling out local-realistic descriptions of multiparticle systems. A violation of this inequality means that the particles must be entangled, but does not, in general, indicate whether N-pa
We investigate genuinely entangled $N$-qubit states with no $N$-partite correlations in the case of symmetric states. Using a tensor representation for mixed symmetric states, we obtain a simple characterization of the absence of $N$-partite correlat
We present a technique to diagnose the condensate fraction in a one-dimensional optical lattice of weakly interacting bosons based on the dynamics of the trapped atoms under the influence of a momentum kick. It is shown using the Multi-Configuration
Quantum spins of mesoscopic size are a well-studied playground for engineering non-classical states. If the spin represents the collective state of an ensemble of qubits, its non-classical behavior is linked to entanglement between the qubits. In thi