ﻻ يوجد ملخص باللغة العربية
We simulate correlation measurements of entangled photons numerically. The model employed is strictly local. In our model correlations arise from a phase, connecting the electromagnetic fields of the two photons at their separate points of measurement. We sum up coincidences for each pair individually and model the operation of a polarizer beam splitter numerically. The results thus obtained differ substantially from the classical results. In addition, we analyze the effects of decoherence and non-ideal beam splitters. It is shown that under realistic experimental conditions the Bell inequalities are violated by more than 30 standard deviations.
We present a theoretical model which allows to keep track of all photons in an interferometer. The model is implemented in a numerical scheme, and we simulate photon interference measurements on one, two, four, and eight slits. Measurements are simul
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c
We use discrete-event simulation to construct a subquantum model that can reproduce the quantum-theoretical prediction for the statistics of data produced by the Einstein-Podolsky-Rosen-Bohm experiment and an extension thereof. This model satisfies E
Conventionally, one interprets the correlations observed in Einstein-Podolsky-Rosen experiments by Bells inequalities and quantum nonlocality. We show, in this paper, that identical correlations arise, if the phase relations of electromagnetic fields