ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulation of Einstein-Podolsky-Rosen experiments in a local hidden variables model

53   0   0.0 ( 0 )
 نشر من قبل W. A. Hofer
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. A. Hofer




اسأل ChatGPT حول البحث

We simulate correlation measurements of entangled photons numerically. The model employed is strictly local. In our model correlations arise from a phase, connecting the electromagnetic fields of the two photons at their separate points of measurement. We sum up coincidences for each pair individually and model the operation of a polarizer beam splitter numerically. The results thus obtained differ substantially from the classical results. In addition, we analyze the effects of decoherence and non-ideal beam splitters. It is shown that under realistic experimental conditions the Bell inequalities are violated by more than 30 standard deviations.



قيم البحث

اقرأ أيضاً

97 - W. A. Hofer 2001
We present a theoretical model which allows to keep track of all photons in an interferometer. The model is implemented in a numerical scheme, and we simulate photon interference measurements on one, two, four, and eight slits. Measurements are simul ated for the high intensity regime, where we show that our simulations describe all experimental results so far. With a slightly modified concept we can also model interference experiments in the low intensity regime, these experiments have recently been performed with single molecules. Finally, we predict the result of polarization measurements, which allow to check the model experimentally.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c haracterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
We use discrete-event simulation to construct a subquantum model that can reproduce the quantum-theoretical prediction for the statistics of data produced by the Einstein-Podolsky-Rosen-Bohm experiment and an extension thereof. This model satisfies E insteins criterion of locality and generates data in an event-by-event and cause-and-effect manner. We show that quantum theory can describe the statistics of the simulation data for a certain range of model parameters only.
73 - W. A. Hofer 2000
Conventionally, one interprets the correlations observed in Einstein-Podolsky-Rosen experiments by Bells inequalities and quantum nonlocality. We show, in this paper, that identical correlations arise, if the phase relations of electromagnetic fields are considered. In particular, we proceed from an analysis of a one-photon model. The correlation probability in this case contains a phase relation cos(b - a) between the two settings. In the two photon model the phases of the photons electromagnetic fields are related at the origin. It is shown that this relation can be translated into a linearity requirement for electromagnetic fields between the two polarizers. Along these lines we compute the correlation integral with an expression conserving linearity. This expression, as shown, correctly describes the measured values. It seems thus that quantum nonlocality can be seen as a combination of boundary conditions on possible electromagnetic fields between the polarizers and a relation of the electromagnetic fields of the two photons via a phase. We expect the same feature to arise in every experiment, where joint probabilities of separate polarization measurements are determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا