ﻻ يوجد ملخص باللغة العربية
A new purification scheme is proposed which applies to arbitrary dimensional bipartite quantum systems. It is based on the repeated application of a special class of nonlinear quantum maps and a single, local unitary operation. This special class of nonlinear quantum maps is generated in a natural way by a hermitian generalized XOR-gate. The proposed purification scheme offers two major advantages, namely it does not require local depolarization operations at each step of the purification procedure and it purifies more efficiently than other know purification schemes.
We first show that partial transposition for pure and mixed two-particle states in a discrete $N$-dimensional Hilbert space is equivalent to a change in sign of the momentum of one of the particles in the Wigner function for the state. We then show t
The nonlocal properties of arbitrary dimensional bipartite quantum systems are investigated. A complete set of invariants under local unitary transformations is presented. These invariants give rise to both sufficient and necessary conditions for the
To achieve the practical applications of near-term noisy quantum devices, low-cost ways to mitigate the noise damages in the devices are essential. In many applications, the noiseless state we want to prepare is often a pure state, which has recently
The exponential growth in Hilbert space with increasing size of a quantum system means that accurately characterising the system becomes significantly harder with system dimension d. We show that self-guided tomography is a practical, efficient, and
We point out the crucial difference between the relative and absolute phase observables treated in our contribution cite{1} and in the Comment by Hall and Pegg cite{HP} respectively. The main contribution of our work is to show that the quantum expec