ﻻ يوجد ملخص باللغة العربية
To achieve the practical applications of near-term noisy quantum devices, low-cost ways to mitigate the noise damages in the devices are essential. In many applications, the noiseless state we want to prepare is often a pure state, which has recently inspired a range of purification-based quantum error mitigation proposals. The existing proposals either are limited to the suppressions of only the leading-order state preparation errors, or require a large number of long-range gates that might be challenging to implement depending on the qubit architecture. This article will provide an overview of the different purification-based quantum error mitigation schemes and propose a resource-efficient scheme that can correct state preparation errors up to any order while requiring only half of the qubits and less than half of the long-range gates compared to before.
If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum
A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and
Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum
Even with the recent rapid developments in quantum hardware, noise remains the biggest challenge for the practical applications of any near-term quantum devices. Full quantum error correction cannot be implemented in these devices due to their limite