ﻻ يوجد ملخص باللغة العربية
The recursion equation analysis of Grovers quantum search algorithm presented by Biham et al. [PRA 60, 2742 (1999)] is generalized. It is applied to the large class of Grovers type algorithms in which the Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any initial complex amplitude distribution is expressed using first order linear difference equations. These equations are solved exactly. The solution provides the number of iterations T after which the probability of finding a marked state upon measurement is the highest, as well as the value of this probability, P_max. Both T and P_max are found to depend on the averages and variances of the initial amplitude distributions of the marked and unmarked states, but not on higher moments.
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. I
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We analyze the performance of classical and quantum search algorithms from a thermodynamic perspective, focusing on resources such as time, energy, and memory size. We consider two examples that are relevant to post-quantum cryptography: Grovers sear
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the corre