ﻻ يوجد ملخص باللغة العربية
We define a new class of unitary solutions to the classical Yang-Baxter equation (CYBE). These ``boundary solutions are those which lie in the closure of the space of unitary solutions to the modified classical Yang-Baxter equation (MCYBE). Using the Belavin-Drinfeld classification of the solutions to the MCYBE, we are able to exhibit new families of solutions to the CYBE. In particular, using the Cremmer-Gervais solution to the MCYBE, we explicitly construct for all n > 2 a boundary solution based on the maximal parabolic subalgebra of sl(n) obtained by deleting the first negative root. We give some evidence for a generalization of this result pertaining to other maximal parabolic subalgebras whose omitted root is relatively prime to $n$. We also give examples of non-boundary solutions for the classical simple Lie algebras.
Let $r:X^{2}rightarrow X^{2}$ be a set-theoretic solution of the Yang-Baxter equation on a finite set $X$. It was proven by Gateva-Ivanova and Van den Bergh that if $r$ is non-degenerate and involutive then the algebra $Klangle x in X mid xy =uv mbox
A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every $n ge 2$. If we view such an operator as a quantum-computational gate, then topological braiding correspo
Cycle sets are known to give non-degenerate unitary solutions of the Yang--Baxter equation and linear cycle sets are enrich
Enhanced Yang-Baxter operators give rise to invariants of oriented links. We expand the enhancing method to generalized Yang-Baxter operators. At present two examples of generalized Yang-Baxter operators are known and recently three types of variatio
We construct solutions to the set-theoretic Yang-Baxter equation using braid group representations in free group automorphisms and their Fox differentials. The method resembles the extensions of groups and quandles.