ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM: perfect model experiments

324   0   0.0 ( 0 )
 نشر من قبل Junjie Liu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper explores the potential of Local Ensemble Transform Kalman Filter (LETKF) by comparing the performance of LETKF with an operational 3D-Var assimilation system, Physical-Space Statistical Analysis System (PSAS), under a perfect model scenario. The comparison is carried out on the finite volume Global Circulation Model (fvGCM) with 72 grid points zonally, 46 grid points meridionally and 55 vertical levels. With only forty ensemble members, LETKF obtains an analysis and forecasts with lower RMS errors than those from PSAS. The performance of LETKF is further improved, especially over the oceans, by assimilating simulated temperature observations from rawinsondes and conventional surface pressure observations instead of geopotential heights. An initial decrease of the forecast errors in the NH observed in PSAS but not in LETKF suggests that the PSAS analysis is less balanced. The observed advantage of LETKF over PSAS is due to the ability of the forty-member ensemble from LETKF to capture flow-dependent errors and thus create a good estimate of the true background uncertainty. Furthermore, localization makes LETKF highly parallel and efficient, requiring only 5 minutes per analysis in a cluster of 20 PCs with forty ensemble members.



قيم البحث

اقرأ أيضاً

We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r ecover a highly oscillatory tensor from measurements of the multiscale solution in a computationally inexpensive manner. The properties of the approximate solution are analysed with respect to the multiscale and discretization parameters, and a convergence result is shown to hold. A reinterpretation of the solution from a Bayesian perspective is provided, and convergence of the approximate conditional posterior distribution is proved with respect to the Wasserstein distance. A numerical experiment validates our methodology, with a particular emphasis on modelling error and computational cost.
Ensemble filters implement sequential Bayesian estimation by representing the probability distribution by an ensemble mean and covariance. Unbiased square root ensemble filters use deterministic algorithms to produce an analysis (posterior) ensemble with prescribed mean and covariance, consistent with the Kalman update. This includes several filters used in practice, such as the Ensemble Transform Kalman Filter (ETKF), the Ensemble Adjustment Kalman Filter (EAKF), and a filter by Whitaker and Hamill. We show that at every time index, as the number of ensemble members increases to infinity, the mean and covariance of an unbiased ensemble square root filter converge to those of the Kalman filter, in the case a linear model and an initial distribution of which all moments exist. The convergence is in $L^{p}$ and the convergence rate does not depend on the model dimension. The result holds in the infinitely dimensional Hilbert space as well.
Variational Inference (VI) combined with Bayesian nonlinear filtering produces the state-of-the-art results for latent trajectory inference. A body of recent works focused on Sequential Monte Carlo (SMC) and its expansion, e.g., Forward Filtering Bac kward Simulation (FFBSi). These studies achieved a great success, however, remain a serious problem for particle degeneracy. In this paper, we propose Ensemble Kalman Objectives (EnKOs), the hybrid method of VI and Ensemble Kalman Filter (EnKF), to infer the State Space Models (SSMs). Unlike the SMC based methods, the our proposed method can identify the latent dynamics given fewer particles because of its rich particle diversity. We demonstrate that EnKOs outperform the SMC based methods in terms of predictive ability for three benchmark nonlinear dynamics systems tasks.
A survey of the data on measured particle fluxes and the rate of ionization in the atmosphere is presented. Measurements as a function of altitude, time and cut-off rigidity are compared with simulations of particle production from cosmic rays. The s imulations generally give a reasonable representation of the data. However, some discrepancies are found. The solar modulation of the particle fluxes is measured and found to be a factor 2.7$pm$0.8 greater than that observed for muons alone near sea level.
This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm based on linear control variate framework. The approach allows for rigorous multifidelity extensions of the EnKF, where the uncertainty in coarser fidelities in the hier archy of models represent control variates for the uncertainty in finer fidelities. Small ensembles of high fidelity model runs are complemented by larger ensembles of cheaper, lower fidelity runs, to obtain much improved analyses at only small additional computational costs. We investigate the use of reduced order models as coarse fidelity control variates in the MFEnKF, and provide analyses to quantify the improvements over the traditional ensemble Kalman filters. We apply these ideas to perform data assimilation with a quasi-geostrophic test problem, using direct numerical simulation and a corresponding POD-Galerkin reduced order model. Numerical results show that the two-fidelity MFEnKF provides better analyses than existing EnKF algorithms at comparable or reduced computational costs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا