ﻻ يوجد ملخص باللغة العربية
Fatigue, sleepiness and disturbed sleep are important factors in health and safety in modern society and there is considerable interest in developing technologies for routine monitoring of associated physiological indicators. Electrophysiology, the measurement of the electrical activity of biological origin, is a key technique for the measurement of physiological parameters in several applications, but it has been traditionally difficult to develop sensors for measurements outside the laboratory or clinic with the required quality and robustness. In this paper we report the results from first human experiments using a new electrophysiology sensor called ENOBIO, using carbon nanotube arrays for penetration of the outer layers of the skin and improved electrical contact. These tests, which have included traditional protocols for the analysis of the electrical activity of the brain--spontaneous EEG and ERP--indicate performance on a par with state of the art research-oriented wet electrodes, suggesting that the envisioned mechanism--skin penetration--is responsible. No ill side-effects have been observed six months after the tests, and the subject did not report any pain or special sensations on application of the electrode.
Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues we
Breathing is vital to life. Therefore, the real-time monitoring of breathing pattern of a patient is crucial to respiratory rehabilitation therapies such as magnetic resonance exams for respiratory-triggered imaging, chronic pulmonary disease treatme
User interfaces provide an interactive window between physical and virtual environments. A new concept in the field of human-computer interaction is a soft user interface; a compliant surface that facilitates touch interaction through deformation. De
Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of X-ray space observatories. These arrays are required to achieve an energy resolution $Delta E$ < 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy
We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beams propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers,