ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the Phase and Amplitude Distortion of a Wavefront using a Plenoptic Sensor

123   0   0.0 ( 0 )
 نشر من قبل Chensheng Wu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beams propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2pi. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens arrays front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.



قيم البحث

اقرأ أيضاً

Atmospheric turbulence causes fluctuations in the local refractive index of air that accumulatively disturb a waves phase and amplitude distribution as it propagates. This impairs the effective range of laser weapons as well as the performance of fre e space optical (FSO) communication systems. Adaptive optics (AO) can be applied to effectively correct wavefront distortions in weak turbulence situations. However, in strong or deep turbulence, where scintillation and beam breakup are common phenomena, traditional wavefront sensing techniques such as the use of Shack-Hartmann sensors lead to incorrect results. Consequently, the performance of AO systems will be greatly compromised. We propose a new approach that can determine the major phase distortions in a beam instantaneously and guide an AO device to compensate for the phase distortion in a few iterations. In our approach, we use a plenoptic wavefront sensor to image the distorted beam into its 4D phase space. A fast reconstruction algorithm based on graph theory is applied to recognize the phase distortion of a laser beam and command the AO device to perform phase compensation. As a result, we show in our experiments that an arbitrary phase distortion with peak to peak value up to 22{pi} can be corrected within a few iteration steps. Scintillation and branch point problems are smartly avoided by the plenoptic sensor and its fast reconstruction algorithm. In this article, we will demonstrate the function of the plenoptic sensor, the fast reconstruction algorithm as well as the beam correction improvements when our approach is applied to an AO system.
While adaptive optical systems are able to remove moderate wavefront distortions in scintillated optical beams, phase singularities that appear in strongly scintillated beams can severely degrade the performance of such an adaptive optical system. Th erefore, the detection of these phase singularities is an important aspect of strong scintillation adaptive optics. We investigate the detection of phase singularities with the aid of a Shack-Hartmann wavefront sensor and show that, in spite of some systematical deficiencies inherent to the Shack-Hartmann wavefront sensor, it can be used for the reliable detection of phase singularities, irrespective of their morphologies. We provide full analytical results, together with numerical simulations of the detection process.
MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of legacy 6.5m MMT adaptive optics system. It is an NSF MSIP-funded project that includes (i) refurbishing of the MMT Adaptive Secondary Mirror (ASM), (ii) new high sensitive and high spatial order visible and near-infrared pyramid wavefront sensors, and (iii) the upgrade of Arizona Infrared Imager and Echelle Spectrograph (ARIES) and MMT high Precision Imaging Polarimeter (MMTPol) science cameras. This paper will present the design and development of the visible pyramid wavefront sensor. This system consists of an acquisition camera, a fast-steering tip-tilt modulation mirror, a double pyramid, a pupil imaging triplet lens, and a low noise and high-speed frame rate based CCID75 camera. We will report on hardware and software and present the laboratory characterization results of the individual subsystems, and outline the on-sky commissioning plan.
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
567 - W. Zhang , T. Li , M. Lours 2011
When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا