ﻻ يوجد ملخص باللغة العربية
A simple model of random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be both solved analytically and simulated numerically. The analytic solution gives the known Eistein-Smoluchowski diffusion law $<r^2> = Dt$ where the diffusion constant $D$ is expressed by the mass and geometry of a particle, the viscosity of a liquid and the average effective time between consecutive collisions of the tracked particle with liquid molecules. The latter allows to make a simulation of the Perrin experiment and verify in detailed study the influence of the statistics on the expected theoretical results. To avoid the problem of small statistics causing departures from the diffusion law we introduce in the second part of the paper the idea of so called Artificially Increased Statistics (AIS) and prove that within this method of experimental data analysis one can confirm the diffusion law and get a good prediction for the diffusion constant even if trajectories of just few particles immersed in a liquid are considered.
In this work, we use the finite differences in time domain (FDTD) numerical method to compute and assess the validity of Hopf solutions, or hopfions, for the electromagnetic field equations. In these solutions, field lines form closed loops character
This paper presents an extension of the hybrid scheme proposed by Wang et al. (J. Comput. Phys. 229 (2010) 169-180) for numerical simulation of compressible isotropic turbulence to flows with higher turbulent Mach numbers. The scheme still utilizes a
The time-dependent matrix-product-state (TDMPS) simulation method has been used for numerically simulating quantum computing for a decade. We introduce our C++ library ZKCM_QC developed for multiprecision TDMPS simulations of quantum circuits. Beside
We present a theoretical model which allows to keep track of all photons in an interferometer. The model is implemented in a numerical scheme, and we simulate photon interference measurements on one, two, four, and eight slits. Measurements are simul
We simulate correlation measurements of entangled photons numerically. The model employed is strictly local. In our model correlations arise from a phase, connecting the electromagnetic fields of the two photons at their separate points of measuremen