ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital Hadron Calorimetry with Glass RPC Active Detectors

57   0   0.0 ( 0 )
 نشر من قبل Tommaso Tabarelli de Fatis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Glass RPC detectors are an attractive candidate for the active part of a highly granular digital hadron calorimeter (DHCAL) at the ILC. A numerical study, based on the GEANT3 simulation package, of the performance of such a calorimeter is presented in this work. A simplified model for the RPC response, tuned on real data, is implemented in the simulation. The reliability of the simulation is demonstrated by comparison to existing data collected with a large volume calorimeter prototype exposed to a pion beam in an energy range from 2 GeV to 10 GeV. In view of an optimization of the readout pitch, a detailed study of the energy and position resolution at the single hadron level for different read-out pad dimensions is presented. These results are then used in a parametric form to obtain a preliminary estimate of the contribution of DHCAL to the reconstruction of the energy flow at the ILC detector.



قيم البحث

اقرأ أيضاً

Beam studies of thin single- and double-stage THGEM-based detectors are presented. Several 10 x 10 cm^2 configurations with a total thickness of 5-6 mm (excluding readout electronics), with 1 x 1 cm^2 pads inductively coupled through a resistive laye r to APV-SRS readout electronics, were investigated with muons and pions. Detection efficiencies in the 98% range were recorded with an average pad-multiplicity of ~1.1. The resistive anode resulted in efficient discharge damping, with few-volt potential drops; discharge probabilities were ~10^{-7} for muons and 10^{-6} for pions in the double-stage configuration, at rates of a few kHz/cm^2. These results, together with the robustness of THGEM electrodes against spark damage and their suitability for economic production over large areas make THGEM-based detectors highly competitive compared to the other technologies considered for the SiD-DHCAL.
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6.10^{34} cm^{-2} s^{-1}$ . The region of the forward muon spectrometer ($|{eta}| > 1.6$) is not equipped with RPC stations. The increase of the expected particles rate up to $2 kHz/cm^{2}$ (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The actual RPC technology of CMS cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provides a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity (LR) glass is proposed to equip at least the two most far away of the four high ${eta}$ muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux is presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.
Multilayer position-sensitive 10B-RPC thermal neutron detectors offer an attractive combination of sub-millimeter spatial resolution and high (>50%) detection efficiency. Here we describe a new position reconstruction method based on a statistical ap proach. Using experimental data, we compare the performance of this method with that of the centroid reconstruction. Both methods result in a similar image linearity/uniformity and spatial resolution. However, the statistical method allows to improve the image quality at the detector periphery, offers more flexible event filtering and allows to develop automatic quality monitoring procedures for early detection of situations when a change in the detector operation conditions starts to affect reconstruction quality.
234 - B.Bilki , J.Butler , T.Cundiff 2008
The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.
We present a study of the response of the highly granular Digital Hadronic Calorimeter with steel absorbers, the Fe-DHCAL, to positrons, muons, and pions with momenta ranging from 2 to 60 GeV/c. Developed in the context of the CALICE collaboration, t his hadron calorimeter utilises Resistive Plate Chambers as active media, interspersed with steel absorber plates. With a transverse granularity of $1,times,1,$cm$^{2}$ and a longitudinal segmentation of 38 layers, the calorimeter counted 350,208 readout channels, each read out with single-bit resolution (digital readout). The data were recorded in the Fermilab test beam in 2010-11. The analysis includes measurements of the calorimeter response and the energy resolution to positrons and muons, as well as detailed studies of various shower shape quantities. The results are compared to simulations based on Geant4, which utilise different electromagnetic and hadronic physics lists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا