ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of a digital hadron calorimeter with muons

255   0   0.0 ( 0 )
 نشر من قبل Jose Repond
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.



قيم البحث

اقرأ أيضاً

Shashlyk-type electromagnetic calorimeter (ECal) of the Multi-Purpose Detector at heavy-ion NICA collider is optimized to provide precise spatial and energy measurements for photons and electrons in the energy range from about 40 MeV to 2-3 GeV. To d eal with high multiplicity of secondary particles from Au-Au reactions, ECal has a fine segmentation and consists of 38,400 cells (towers). Given the big number of towers and the time constraint, it is not possible to calibrate every ECal tower with beam. In this paper, we describe the strategy of the first-order calibration of ECal with cosmic muons.
116 - B.Bilki , John Butler , Ed May 2010
In the context of developing a hadron calorimeter with extremely fine granularity for the application of Particle Flow Algorithms to the measurement of jet energies at a future lepton collider, we report on extensive tests of a small scale prototype calorimeter. The calorimeter contained up to 10 layers of Resistive Plate Chambers (RPCs) with 2560 1 times 1 cm2 readout pads, interleaved with steel absorber plates. The tests included both long-term Cosmic Ray data taking and measurements in particle beams, where the response to broadband muons and to pions and positrons with energies in the range of 1 - 16 GeV was established. Detailed measurements of the chambers efficiency as function of beam intensity have also been performed using 120 GeV protons at varying intensity. The data are compared to simulations based on GEANT4 and to analytical calculations of the rate limitations.
84 - C. Adams , A. Bambaugh , B. Bilki 2016
A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented rea dout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.
64 - C. Adams , A. Bambaugh , B. Bilki 2016
A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented rea dout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.
CEPC (Circular Electron and Positron Collider) is a large experiment facility proposed by Chinese particle physics community. One of its running option is being the Higgs factory. Calorimeter is the main part of this experiment to measure the jet ene rgy. Semi-digital hadron calorimeter (SDHCAL) is one of the options for the hadron measurement. GEM detector with its high position resolution and flexible configuration is one of the candidates for the active layer of the SDHCAL. The main purpose of this paper is to provide a feasible readout method for the GEM-based semi-digital hadron calorimeter. A small-scale prototype is designed and implemented, including front-end board (FEB) and data interface board (DIF). The prototype electronics has been tested. The equivalent RMS noise of all channels is below 0.35fC. The dynamic range is up to 500fC and the gain variation is less than 1%. The readout electronics is applied on a double-layer GEM detector with 1cm*1cm readout pad. Result indicates that the electronics works well with the detector. The detection efficiency of MIP is over 95% with 5fC threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا