ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of induction at low magnetic Prandtl number

78   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Pinton
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the induction of magnetic field in flows of electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive lengthscales, we propose a new numerical approach. The coupled magnetic and fluid equations are solved using a mixed scheme, where the magnetic field fluctuations are fully resolved and the velocity fluctuations at small scale are modelled using a Large Eddy Simulation (LES) scheme. We study the response of a forced Taylor-Green flow to an externally applied field: tology of the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with existing experimental data; a global $1/f$ behavior at long times is also evidenced.



قيم البحث

اقرأ أيضاً

This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl number Pm<<1. The dependence of the critical Rm_c vs. the hydrodynamic Reynolds number Re is obtained for 1<Re<6700. In the limit Pm<<1, Rm_c is ~3 times larger than for Pm>1. The stability curve Rm_c(Re) (and, it is argued, the nature of the dynamo) is substantially different from the case of the simulations and liquid-metal experiments with a mean flow. It is not as yet possible to determine numerically whether the growth rate is ~Rm^{1/2} in the limit Re>>Rm>>1, as should be the case if the dynamo is driven by the inertial-range motions. The magnetic-energy spectrum in the low-Pm regime is qualitatively different from the Pm>1 case and appears to develop a negative spectral slope, although current resolutions are insufficient to determine its asymptotic form. At 1<Rm<Rm_c, the magnetic fluctuations induced via the tangling by turbulence of a weak mean field are investigated and the possibility of a k^{-1} spectrum above the resistive scale is examined. At low Rm<1, the induced fluctuations are well described by the quasistatic approximation; the k^{-11/3} spectrum is confirmed for the first time in direct numerical simulations.
In this paper we examine the role of weak magnetic fields in breaking Kelvins circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low $Pm$) fluid. We co nsider three canonical inviscid solutions for the purely hydrodynamical problem, namely a Gaussian vortex, a circular vortex patch and an elliptical vortex patch. We examine how magnetic fields lead to an initial loss of circulation $Gamma$ and attempt to derive scaling laws for the loss of circulation as a function of field strength and diffusion as measured by two non-dimensional parameters. We show that for all cases the loss of circulation depends on the integrated effects of the Lorentz force, with the patch cases leading to significantly greater circulation loss. For the case of the elliptical vortex the loss of circulation depends on the total area swept out by the rotating vortex and so this leads to more efficient circulation loss than for a circular vortex.
The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows wi th applied external magnetic field has been studied for decades, the influence of the instability on the outward angular momentum transport, necessary for the accretion of the disk, is still not well known. In this work we model Keplerian rotation with Taylor-Couette flow and imposed azimuthal magnetic field using both linear and nonlinear approaches. We present scalings of instability with Hartmann and Reynolds numbers via linear analysis and direct numerical simulations (DNS) for the two magnetic Prandtl numbers of $1.4 cdot 10^{-6}$ and $1$. Inside of the instability domains modes with different axial wavenumbers dominate, resulting in sub-domains of instabilities, which appear different for each $Pm$. The DNS show the emergence of 1- and 2-frequency spatio-temporally oscillating structures for $Pm=1$ close the onset of instability, as well as significant enhancement of angular momentum transport for $Pm=1$ as compared to $Pm=1.4 cdot 10^{-6}$.
Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.
93 - Yannick Ponty 2006
We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the ind uction equations are jointly solved. The kinematic instability is found to have two branches, for all explored Reynolds numbers. The dynamical dynamo threshold follows these branches: at low Reynolds number it lies within the low branch while at high kinetic Reynolds number it is close to the high branch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا