ﻻ يوجد ملخص باللغة العربية
We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the induction equations are jointly solved. The kinematic instability is found to have two branches, for all explored Reynolds numbers. The dynamical dynamo threshold follows these branches: at low Reynolds number it lies within the low branch while at high kinetic Reynolds number it is close to the high branch.
This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl
We present a three--pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers $P_M$. The difficulty of resolving a large range of scales is circumvented by combining Direct Numerical Simulations, a Lagrangian-averaged model, an
The excitation and further sustenance of large-scale magnetic fields in rotating astrophysical systems, including planets, stars and galaxies, is generally thought to involve a fluid magnetic dynamo effect driven by helical magnetohydrodynamic turbul
The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows wi
In this study we discuss two key issues related to a small-scale dynamo instability at low magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for the growth rate of small-scale dynamo instability in the vicinity of