ترغب بنشر مسار تعليمي؟ اضغط هنا

Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality

287   0   0.0 ( 0 )
 نشر من قبل Rudolf Grimm
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dense gas of cesium atoms at the crossover to two-dimensionality is prepared in a highly anisotropic surface trap that is realized with two evanescent light waves. Temperatures as low as 100nK are reached with 20.000 atoms at a phase-space density close to 0.1. The lowest quantum state in the tightly confined direction is populated by more than 60%. The system offers intriguing prospects for future experiments on degenerate quantum gases in two dimensions.



قيم البحث

اقرأ أيضاً

The fluctuations in thermodynamic and transport properties in many-body systems gain importance as the number of constituent particles is reduced. Ultracold atomic gases provide a clean setting for the study of mesoscopic systems; however, the detect ion of temporal fluctuations is hindered by the typically destructive detection, precluding repeated precise measurements on the same sample. Here, we overcome this hindrance by utilizing the enhanced light--matter coupling in an optical cavity to perform a minimally invasive continuous measurement and track the time evolution of the atom number in a quasi two-dimensional atomic gas during evaporation from a tilted trapping potential. We demonstrate sufficient measurement precision to detect atom number fluctuations well below the level set by Poissonian statistics. Furthermore, we characterize the non-linearity of the evaporation process and the inherent fluctuations of the transport of atoms out of the trapping volume through two-time correlations of the atom number. Our results establish coupled atom--cavity systems as a novel testbed for observing thermodynamics and transport phenomena in mesosopic cold atomic gases and, generally, pave the way for measuring multi-time correlation functions of ultracold quantum gases.
130 - Thierry Lahaye 2005
We report on our recent progress in the manipulation and cooling of a magnetically guided, high flux beam of $^{87}{rm Rb}$ atoms. Typically $7times 10^9$ atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, wit h a temperature $sim550$ $mu$K, at an initial velocity of 90 cm/s. The atoms are subsequently slowed down to $sim 60$ cm/s using an upward slope. The relatively high collision rate (5 s$^{-1}$) allows us to start forced evaporative cooling of the beam, leading to a reduction of the beam temperature by a factor of ~4, and a ten-fold increase of the on-axis phase-space density.
In recent years, cold atoms could prove their scientific impact not only on ground but in microgravity environments such as the drop tower in Bremen, sounding rockets and parabolic flights. We investigate the preparation of cold atoms in an optical d ipole trap, with an emphasis on evaporative cooling under microgravity. Up to $ 1times10^{6} $ rubidium-87 atoms were optically trapped from a temporarily dark magneto optical trap during free fall in the droptower in Bremen. The efficiency of evaporation is determined to be equal with and without the effect of gravity. This is confirmed using numerical simulations that prove the dimension of evaporation to be three-dimensional in both cases due to the anharmonicity of optical potentials. These findings pave the way towards various experiments on ultra-cold atoms under microgravity and support other existing experiments based on atom chips but with plans for additional optical dipole traps such as the upcoming follow-up missions to current and past spaceborne experiments.
Two-dimensional problem of evanescent wave scattering by dielectric or metallic cylinders near the interface between two dielectric media is solved numerically by boundary integral equations method. A special Green function was proposed to avoid the infinite integration. A pattern with a circular and a prolate elliptic cylinders, respectively, is suggested to simulate the sample and the probe in near-field optical microscopy. The energy flux in the midplane of the probe-cylinder is calculated as a function of its position.
We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent $^{87}$Rb experiment [Phys. Rev. A 60, R1759 (1999)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا