ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoionization of ultracold and Bose-Einstein condensed Rb atoms

116   0   0.0 ( 0 )
 نشر من قبل Oliver Morsch
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.



قيم البحث

اقرأ أيضاً

Two-photon ionization of Rubidium atoms in a magneto-optical trap and a Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns laser pulses, we detect single ions photoionized from the condenstate with a 35(10)% efficiency. The m easurements are performed using a quartz cell with external electrodes, allowing large optical access for BECs and optical lattices.
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential energy curves and molecular parameters for several low lying states of the Rb, Yb$^+$ system. We employ both a multi-reference configurat ion interaction (MRCI) and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients are estimated from our {it ab initio} data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom ($alpha_d=128.4$ atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb,Rb$^+$) channels that were carried out in our work. However, we find that the pseudo potential approximation is rather limited in validity, and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
We report the formation of a dual-species Bose-Einstein condensate of $^{87}$Rb and $^{133}$Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of $^{133}$Cs via elastic collisions with $^{87}$Rb, initially in a m agnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to $2times10^{4}$ atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the $^{87}$Rb during the cooling, we create single species $^{133}$Cs condensates of up to $6times10^{4}$ atoms.
We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent Raman processes through a (two atom) molecular in termediate state. We compare our scheme with other recent proposals for generation of massive entanglement of Bose condensed atoms.
We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of $^{87}Rb$, using velocity selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined $h/m_{Rb}$ with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave set-up. This will allow us to measure $h/m_{Rb}$ better than $10^{-8}$ and hence the fine structure constant $alpha$ with an uncertainty close to the most accurate value coming from the ($g-2$) determination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا