ﻻ يوجد ملخص باللغة العربية
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential energy curves and molecular parameters for several low lying states of the Rb, Yb$^+$ system. We employ both a multi-reference configuration interaction (MRCI) and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients are estimated from our {it ab initio} data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom ($alpha_d=128.4$ atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb,Rb$^+$) channels that were carried out in our work. However, we find that the pseudo potential approximation is rather limited in validity, and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Alth
An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to $^{85}text{Rb}$,
We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micr
We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin