ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-optical trap for metastable helium at 389 nm

73   0   0.0 ( 0 )
 نشر من قبل J. C. J. Koelemeij
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz) typically contains few times 10^7 atoms at a relatively high (~10^9 cm^-3) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2 * 10^-10 cm^3/s < beta < 1.0 * 10^-9 cm^3/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 3S1 -> 2 3P2 line at 1083 nm. Furthermore, we measure a temperature of 0.46(1) mK, a factor 2.5 lower as compared to the 1083 nm case. Decreasing the detuning to Delta= -9 MHz results in a cloud temperature as low as 0.25(1) mK, at small number of trapped atoms. The 389 nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.



قيم البحث

اقرأ أيضاً

We report on the realization of a magneto-optical trap (MOT) for metastable strontium operating on the 2.92 $mu$m transition between the energy levels $5s5p~^3mathrm{P}_2$ and $5s4d~^3mathrm{D}_3$. The strontium atoms are initially captured in a MOT operating on the 461 nm transition between the energy levels $5s^2~^1mathrm{S}_0$ and $5s5p~^1mathrm{P}_1$, prior to being transferred into the metastable MOT and cooled to a final temperature of 6 $mu$K. Challenges arising from aligning the mid-infrared and 461 nm light are mitigated by employing the same pyramid reflector to realize both MOTs. Finally, the 2.92 $mu$m transition is used to realize a full cooling sequence for an optical lattice clock, in which cold samples of $^{87}mathrm{Sr}$ are loaded into a magic-wavelength optical lattice and initialized in a spin-polarized state to allow high-precision spectroscopy of the $5s^2~^1mathrm{S}_0$ to $5s5p~^3mathrm{P}_0$ clock transition.
218 - A. Frisch , K. Aikawa , M. Mark 2012
We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to $N=2 times 10^{8}$ atoms at a temperature of about $T=15 mu K$. This simple sch eme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.
We present the properties and advantages of a new magneto-optical trap (MOT) where blue-detuned light drives `type-II transitions that have dark ground states. Using $^{87}$Rb, we reach a radiation-pressure-limited density exceeding $10^{11}$cm$^{-3} $ and a temperature below 30$mu$K. The phase-space density is higher than in normal atomic MOTs, and a million times higher than comparable red-detuned type-II MOTs, making it particularly attractive for molecular MOTs which rely on type-II transitions. The loss of atoms from the trap is dominated by ultracold collisions between Rb atoms. For typical trapping conditions, we measure a loss rate of $1.8(4)times10^{-10}$cm$^{3}$s$^{-1}$.
Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat gr ating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.
We demonstrate a Magneto-Optical Trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the {it x}- and {it y}- directions, the laser beams along the {it z}-direction are at a different wavelength that couples two sets of {it excited} states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser-cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا