ﻻ يوجد ملخص باللغة العربية
The proposed universality of small scale turbulence is investigated for a set of measurements in a cryogenic free jet with a variation of the Reynolds number (Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity increments by means of structure functions or probability density functions is replaced by a new method which is based on the theory of stochastic Markovian processes. It gives access to a more complete characterization by means of joint probabilities of finding velocity increments at several scales. Based on this more precise method our results call in question the concept of universality.
The self-similar Richardson cascade admits two logically possible scenarios of small-scale turbulence at high Reynolds numbers. In the first scenario, eddies population densities vary as a function of eddies scales. As a result, one or a few eddy typ
We investigate universality of the Eulerian velocity structure functions using velocity fields obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments and the direct numerical simulations (DNS) of the Navier-Stokes e
We present a model describing evolution of the small-scale Navier-Stokes turbulence due to its stochastic distortions by much larger turbulent scales. This study is motivated by numerical findings (laval, 2001) that such interactions of separated sca
Recent studies show that spherical motile micro-organisms in turbulence subject to gravitational torques gather in down-welling regions of the turbulent flow. By analysing a statistical model we analytically compute how shape affects the dynamics, pr
Non-Gaussian statistics of large-scale fields are routinely observed in data from atmospheric and oceanic campaigns and global models. Recent direct numerical simulations (DNSs) showed that large-scale intermittency in stably stratified flows is due