ﻻ يوجد ملخص باللغة العربية
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the sub-micron scale. These include controlled and coherent splitting of the wavefunction as well as cooling, trapping and guiding. In particular we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
In this article, we study the thermalizability of a system consisting of two atoms in a circular, transversely harmonic waveguide in the multimode regime. While showing some signatures of the quantum-chaotic behavior, the system fails to reach a ther
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when app
We demonstrate an atom interferometer that uses a laser-cooled continuous beam of $^{87}$Rb atoms having velocities of 10--20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach--Zehnder interference fring
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently
We measure the temperature of ultra-cold Rb-87 gases transferred into an optical lattice and compare to non-interacting thermodynamics for a combined lattice--parabolic potential. Absolute temperature is determined at low temperature by fitting quasi