ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization and limits of a cold atom Sagnac interferometer

181   0   0.0 ( 0 )
 نشر من قبل Thomas Leveque
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Gauguet




اسأل ChatGPT حول البحث

We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal allowing to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generations of ultra-sensitive atom gyroscopes.



قيم البحث

اقرأ أيضاً

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. We describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. The vacuum package is integrated into the optomechanical design of a compact cold-atom sensor head with fixed optical components. In addition, a multichannel laser system driven by a single seed laser has been implemented with time-multiplexed frequency shifting using single sideband modulators, reducing the number of optical channels connected to the sensor head. This laser system architecture is compatible with a highly miniaturized photonic integrated circuit approach, and by demonstrating atom-interferometer operation with this laser system, we show feasibility for the integrated photonic approach. In the compact sensor head, sub-Doppler cooling in the GMOT produces 15 uK temperatures, which can operate at a 20 Hz data rate for the atom interferometer sequence. After validating atomic coherence with Ramsey interferometry, we demonstrate a light-pulse atom interferometer in a gravimeter configuration without vibration isolation for 10 Hz measurement cycle rate and T = 0 - 4.5 ms interrogation time, resulting in $Delta$g / g = 2.0e-6. All these efforts demonstrate progress towards deployable cold-atom inertial sensors under large amplitude motional dynamics.
94 - Zhe Luo , E R Moan , 2021
A Sagnac atom interferometer can be constructed using a Bose-Einstein condensate trapped in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams, the atoms can be launched into circular orbits, with two counterpropagating interferometers allowing many sources of common-mode noise to be excluded. In a perfectly symmetric and harmonic potential, the interferometer output would depend only on the rotation rate of the apparatus. However, deviations from the ideal case can lead to spurious phase shifts. These phase shifts have been theoretically analyzed for anharmonic perturbations up to quartic in the confining potential, as well as angular deviations of the laser beams, timing deviations of the laser pulses, and motional excitations of the initial condensate. Analytical and numerical results show the leading effects of the perturbations to be second order. The scaling of the phase shifts with the number of orbits and the trap axial frequency ratio are determined. The results indicate that sensitive parameters should be controlled at the $10^{-5}$ level to accommodate a rotation sensing accuracy of $10^{-9}$ rad/s. The leading-order perturbations are suppressed in the case of perfect cylindrical symmetry, even in the presence of anharmonicity and other errors. An experimental measurement of one of the perturbation terms is presented.
116 - H. B. Xue , Y. Y. Feng , S. Chen 2014
We demonstrate an atom interferometer that uses a laser-cooled continuous beam of $^{87}$Rb atoms having velocities of 10--20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach--Zehnder interference fring es are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm$^2$ at a bandwidth of 190 Hz with a deduced sensitivity of $7.8times10^{-5}$ rad/s/$sqrt{{Hz}}$ for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offe rs a remarkable range of possibilities for atom manipulation on the sub-micron scale. These include controlled and coherent splitting of the wavefunction as well as cooling, trapping and guiding. In particular we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
We study the time-dependent response of a cold atom cloud illuminated by a laser beam immediately after the light is switched on experimentally and theoretically. We show that cooperative effects, which have been previously investigated in the decay dynamics after the laser is switched off, also give rise to characteristic features in this configuration. In particular, we show that collective Rabi oscillations exhibit a superradiant damping. We first consider an experiment that is performed in the linear-optics regime and well described by a linear coupled-dipole theory. We then show that this linear-optics model breaks down when increasing the saturation parameter, and that the experimental results are then well described by a nonlinear mean-field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا