ﻻ يوجد ملخص باللغة العربية
Two- and three-pion correlations are investigated in cases when disoriented chiral condensate (DCC) occurs. A chaoticity and weight factor are used as measures of two- and three-pion correlations, and the various models for DCC are investigated. Some models are found to yield the chaoticity and weight factor in a reasonable agreement with recent experimental data.
Three-pion interferometry is investigated for new information on the space-time structure of the pion source created in ultra-relativistic heavy-ion collisions. The two- and three-pion correlations are numerically computed for incoherent source funct
Two- and three-pion correlation functions are investigated for a source that is not fully chaotic. Various models are examined to describe the source. The chaoticity and weight factor are evaluated in each model as measures of the strength of correla
A new method to search for localized domains of disoriented chiral condensates (DCC) has been proposed by utilising the (eta-phi) phase space distributions of charged particles and photons. Using the discrete wavelet transformation (DWT) analysis tec
We show that an event-by-event fluctuation of the ratio of neutral pions or resulting photons to charged pions can be used as an effective probe for the formation of disoriented chiral condensates. The fact that the neutral pion fraction produced in
While string models describe initial state radiation in ultra-relativistic nuclear collisions well, they mainly differ in their end-point positions of the strings in spatial rapidity. We present a generic model where wounded constituents are amended