ﻻ يوجد ملخص باللغة العربية
A new method to search for localized domains of disoriented chiral condensates (DCC) has been proposed by utilising the (eta-phi) phase space distributions of charged particles and photons. Using the discrete wavelet transformation (DWT) analysis technique, it has been found that the presence of DCC domains broadens the distribution of wavelet coefficients in comparison to that of normal events. Strength contours have been derived from the differences in rms deviations of these distributions by taking into account the size of DCC domains and the probability of DCC production in ultra-relativistic heavy ion collisions. This technique can be suitably adopted to experiments measuring multiplicities of charged particles and photons.
We show that an event-by-event fluctuation of the ratio of neutral pions or resulting photons to charged pions can be used as an effective probe for the formation of disoriented chiral condensates. The fact that the neutral pion fraction produced in
We study the dynamics of the chiral phase transition expected during the expansion of the quark-gluon plasma produced in a high energy hadron or heavy ion collision, using the $O(4)$ linear sigma model in the mean field approximation. Imposing boost
Two- and three-pion correlations are investigated in cases when disoriented chiral condensate (DCC) occurs. A chaoticity and weight factor are used as measures of two- and three-pion correlations, and the various models for DCC are investigated. Some
Although the generation of disoriented chiral condensates (DCCs), where the order parameter for chiral symmetry breaking is misaligned with respect to the vacuum direction in isospin state, is quite natural in the theory of strong interactions, they
We make a complete dynamical study of Isotopic spin conservation effects on the multiplicity distributions of both hard and soft pions emitted in a quark gluon plasma undergoing a non-equilibrium phase transition.