ﻻ يوجد ملخص باللغة العربية
Formation mechanisms of single, twin, and double hypernuclei from Xi^- absorption at rest on 12C are investigated with an refined microscopic transport model, that incorporates the recently developed Quantal Langevin treatment into Antisymmetrized Molecular Dynamics. The quantum fluctuations suppress the formation probability of double hyperfragments to around 10%, which is comparable to the experimental data, and the dynamical formation of twin hyperfragment can be described qualitatively.
We investigate double $Lambda$ hyperfragment formation from the statistical decay of double $Lambda$ compound nuclei produced in the $Xi^-$ absorption at rest in light nuclei, $^{12}mathrm{C}$, $^{14}mathrm{N}$ and $^{16}mathrm{O}$. We examine the ta
Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical
We study effects of eccentricity fluctuations on the elliptic flow coefficient v_2 at mid-rapidity in both Au+Au and Cu+Cu collisions at sqrt{s_NN}=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quar
$p,Lambda$ emission in coincidence following $K^-$ absorption at rest in nuclei is studied using quantum mechanical scattering theory and nuclear wave functions. $K^-$ absorption is assumed to occur on two protons in the nucleus. In the formalism, em
We studied the effects of centrality fluctuation and deuteron formation on the cumulants ($C_n$) and correlation functions ($kappa_n$) of protons up to sixth order in most central ($b<3$ fm) Au+Au collisions at $sqrt{s_mathrm{NN}}$ = 3 GeV from a mic