ترغب بنشر مسار تعليمي؟ اضغط هنا

The anapole moment and nucleon weak interactions

53   0   0.0 ( 0 )
 نشر من قبل Douglas Murray
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From the recent measurement of parity nonconservation (PNC) in the Cs atom we have extracted the constant of the nuclear spin dependent electron-nucleon PNC interaction, $kappa = 0.442 (63)$; the anapole moment constant, $kappa_a = 0.364 (62)$; the strength of the PNC proton-nucleus potential, $g_p = 7.3 pm 1.2 (exp.) pm 1.5 (theor.)$; the $pi$-meson-nucleon interaction constant, $f_pi equiv h_pi^{1} = [9.5 pm 2.1 (exp.) pm 3.5 (theor.)] times 10^{-7}$; and the strength of the neutron-nucleus potential, $g_n = -1.7 pm 0.8 (exp.) pm 1.3 (theor.)$.



قيم البحث

اقرأ أيضاً

113 - J. L. Friar , I. Sick 2005
We determine the third Zemach moment of hydrogen (<r^3>_(2)) using only the world data on elastic electron-proton scattering. This moment dominates the O (Z alpha)^5 hadronic correction to the Lamb shift in muonic atoms. The resulting moment, <r^3 >_ (2) = 2.71(13) fm^3, is somewhat larger than previously inferred values based on models. The contribution of that moment to the muonic hydrogen 2S level is -0.0247(12) meV.
110 - Y. Fujiwara 2004
Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto- Niigata group are applied to the hypertriton calculation in a new three-cluster Faddeev formalism using the two-cluster resonating-group method kernels. The most recent model, fss2, gives a reasonable result similar to the Nijmegen soft-core model NSC89, except for an appreciable contributions of higher partial waves.
96 - Y. Fujiwara 2001
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o rder term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry breaking and the Coulomb effect are properly incorporated in the particle basis. The essential feature of the Lambda N - Sigma N coupling is qualitatively similar to that obtained from the previous models. The nuclear saturation properties and the single-particle potentials of the nucleon, Lambda and Sigma are reexamined through the G-matrix calculation. The single-particle potential of the Sigma hyperon is weakly repulsive in symmetric nuclear matter. The single-particle spin-orbit strength for the Lambda particle is very small, in comparison with that of the nucleons, due to the strong antisymmetric spin-orbit force generated from the Fermi-Breit interaction.
Employing the covariant baryon chiral perturbation theory, we calculate the leading and next-to-leading order two-pion exchange (TPE) contributions to $NN$ interaction up to order $O(p^3)$. We compare the so-obtained $NN$ phase shifts with $2leq Lleq 6$ and mixing angles with $2leq Jleq6$ with those obtained in the nonrelativistic baryon chiral perturbation theory, which allows us to check the relativistic corrections to the medium-range part of $NN$ interactions. We show that the contributions of relativistic TPE are more moderate than those of the nonrelativistic TPE. The relativistic corrections play an important role in F-waves especially the $^3text{F}_2$ partial wave. Moreover, the relativistic results seem to converge faster than the nonrelativistic results in almost all the partial waves studied in the present work, consistent with the studies performed in the one-baryon sector.
320 - M. R. Robilotta 2008
A discussion is presented of the dynamics underlying three-body nuclear forces, with emphasis on changes which occurred over several decades.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا