ﻻ يوجد ملخص باللغة العربية
Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector scalar delta-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory. It is known that the introduction of a delta-meson in the constant coupling scheme leads to an increase of the symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of neutron star matter and to re-examine the delta-field effects in asymmetric nuclear matter. Our calculations show that, due to the increase of the effective delta coupling at high density, with density dependent couplings the neutron star masses in fact can be even reduced.
The dynamic response of asymmetric nuclear matter is studied by using a Time-Dependent Local Isospin Density (TDLIDA) approximation approach. Calculations are based on a local density energy functional derived by an Auxiliary Field Diffusion Monte Ca
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low
We propose an axisymmetric angle-dependent gap (ADG) state with the broken rotational symmetry in isospin-asymmetric nuclear matter. In this state, the deformed Fermi spheres of neutrons and protons increase the pairing probabilities along the axis o
We consider the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with an angle dependent-gap (ADG) for the arbitrary angle theta_0 between the direction of the Cooper pair momentum and the symmetry axis of the ADG in asymmetric nuclear matter. We find t
The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativi