ترغب بنشر مسار تعليمي؟ اضغط هنا

On the resonance spectra of particle-unstable light nuclei with a Sturmian approach that preserves the Pauli principle

49   0   0.0 ( 0 )
 نشر من قبل Luciano Canton
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The fundamental ingredients of the MCAS (multi-channel algebraic scattering) method are discussed. The main feature, namely the application of the sturmian theory for nucleon-nucleus scattering, allows solution of the scattering problem given the phenomenological ingredients necessary for the description of weakly-bound (or particle-unstable) light nuclear systems. Currently, to describe these systems, we use a macroscopic, collective model. Analyses show that the couplings to low-energy collective-core excitations are fundamental but they are physically meaningful only if the constraints introduced by the Pauli principle are taken into account. For this we introduce in the nucleon-nucleus system the Orthogonalizing Pseudo-Potential formalism, extended to collective excitations of the core. The formalism leads one to discuss a new concept, Pauli hindrance, which appears to be important especially to understand the structure of weakly-bound and unbound systems.



قيم البحث

اقرأ أيضاً

Sturmian theory for nucleon-nucleus scattering is discussed in the presence of all the phenomenological ingredients necessary for the description of weakly-bound (or particle-unstable) light nuclear systems. Currently, we use a macroscopic potential model of collective nature. The analysis shows that the couplings to low-energy collective-core excitations are fundamental but they are physically meaningful only if the constraints introduced by the Pauli principle are taken into account. The formalism leads one to discuss a new concept, Pauli hindrance, which appears to be important to understand the structure of weakly-bound and unbound systems.
We study effects of the Pauli principle on the potential energy of two-cluster systems. The object of the investigation is the lightest nuclei of p-shell with a dominant $alpha$-cluster channel. For this aim we construct matrix elements of two-cluste r potential energy between cluster oscillator functions with and without full antisymmetrization. Eigenvalues and eigenfunctions of the potential energy matrix are studied in detail. Eigenfunctions of the potential energy operator are presented in oscillator, coordinate and momentum spaces. We demonstrate that the Pauli principle affects more strongly the eigenfunctions than the eigenvalues of the matrix and leads to the formation of resonance and trapped states.
127 - P. R. Fraser , K. Amos , L. Canton 2010
The physics of radioactive ion beams implies the description of weakly-bound nuclear systems. One key aspect concerns the coupling to low-lying collective-type excited states, which for these systems might not be stable levels, but particle emitting resonances. In this work we describe how the scattering cross section and compound spectra change when the colliding fragments have such collective excitations featuring particle emission. We explore this question in the framework of a multi-channel algebraic scattering method of determining nucleon-nucleus cross sections at low energies. For a range of light-mass, particle-unstable nuclear targets, scattering cross sections as well as the spectra of the compound nuclei formed have been determined from calculations that do and do not consider particle emission widths for nuclear states. Assuming a resonance character for target states markedly varies evaluated cross sections from those obtained assuming the target spectrum to have entirely discrete states.
126 - S. P. Weppner 2004
A new development in the antisymmetrization of the first-order nucleon-nucleus elastic microscopic optical potential is presented which systematically includes the many-body character of the nucleus within the two-body scattering operators. The resul ts reduce the overall strength of the nucleon-nucleus potential and require the inclusion of historically excluded channels from the nucleon-nucleon potential input. Calculations produced improve the match with neutron-nucleus total cross section, elastic proton-nucleus differential cross section, and spin observable data. A comparison is also done using different nucleon-nucleon potentials from the past twenty years.
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar $lambdavarphi^4$ field theory and Yukawa-type model are used. We give also an example of nonperturbative calcul ation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا