ﻻ يوجد ملخص باللغة العربية
A new development in the antisymmetrization of the first-order nucleon-nucleus elastic microscopic optical potential is presented which systematically includes the many-body character of the nucleus within the two-body scattering operators. The results reduce the overall strength of the nucleon-nucleus potential and require the inclusion of historically excluded channels from the nucleon-nucleon potential input. Calculations produced improve the match with neutron-nucleus total cross section, elastic proton-nucleus differential cross section, and spin observable data. A comparison is also done using different nucleon-nucleon potentials from the past twenty years.
We study effects of the Pauli principle on the potential energy of two-cluster systems. The object of the investigation is the lightest nuclei of p-shell with a dominant $alpha$-cluster channel. For this aim we construct matrix elements of two-cluste
Spectrum of the Pauli projector of a quantum many-body system is studied. It is proven that the kern of the complete many-body projector is identical to the kern of the sum of two-body projectors. Since the kern of the many-body Pauli projector defin
Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integrati
Sturmian theory for nucleon-nucleus scattering is discussed in the presence of all the phenomenological ingredients necessary for the description of weakly-bound (or particle-unstable) light nuclear systems. Currently, we use a macroscopic potential
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated