ﻻ يوجد ملخص باللغة العربية
Rotational and deformation dependence of isovector and isoscalar pairing correlations at finite temperature are studied in an exactly solvable cranked deformed shell model Hamiltonian. It is shown that isovector pairing correlations, as expected, decrease with increasing deformation and the isoscalar pairing correlations remain constant at temperature, T=0. However, it is observed that at finite temperature both isovector and isoscalar pairing correlations are enhanced with increasing deformation, which contradict the mean-field predictions. It is also demonstrated that the pair correlations, which are quenched at T=0 and high rotational frequency re-appear at finite temperature. The changes in the individual multipole pairing fields as a function of rotation and deformation are analyzed in detail.
The relativistic and nonrelativistic finite temperature proton-neutron quasiparticle random phase approximation (FT-PNQRPA) methods are developed to study the interplay of the pairing and temperature effects on the Gamow-Teller excitations in open-sh
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description di
We show that spin systems with infinite-range interactions can violate at thermal equilibrium a multipartite Bell inequality, up to a finite critical temperature $T_c$. Our framework can be applied to a wide class of spin systems and Bell inequalitie
Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei c
In this paper we use 1D quantum mechanical systems with Higgs-like interaction potential to study the emergence of topological objects at finite temperature. Two different model systems are studied, the standard double-well potential model and a newl