ﻻ يوجد ملخص باللغة العربية
Recently, the zero-pairing limit of Hartree-Fock-Bogoliubov (HFB) mean-field theory was studied in detail in arXiv:2006.02871. It was shown that such a limit is always well-defined for any particle number A, but the resulting many-body description differs qualitatively depending on whether the system is of closed-(sub)shell or open-(sub)shell nature. Here, we extend the discussion to the more general framework of Finite-Temperature HFB (FTHFB) which deals with statistical density operators, instead of pure many-body states. We scrutinize in detail the zero-temperature and zero-pairing limits of such a description, and in particular the combination of both limits. For closed-shell systems, we find that the FTHFB formulism reduces to the (zero-temperature) Hartree-Fock formulism, i.e. we recover the textbook solution. For open-shell systems, however, the resulting description depends on the order in which both limits are taken: if the zero-temperature limit is performed first, the FTHFB density operator demotes to a pure state which is a linear combination of a finite number of Slater determinants, i.e. the case of arXiv:2006.02871. If the zero-pairing limit is performed first, the FTHFB density operator remains a mixture of a finite number of Slater determinants with non-zero entropy, even as the temperature vanishes. These analytical findings are illustrated numerically for a series of Oxygen isotopes.
The variational Hartree-Fock-Bogoliubov (HFB) mean-field theory is the starting point of various (ab initio) many-body methods dedicated to superfluid systems. While taking the zero-pairing limit of HFB equations constitutes a text-book problem when
Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei c
In order to study structure of proto-neutron stars and those in subsequent cooling stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB)
Microcavity exciton-polaritons, known to exhibit non-equilibrium Bose condensation at high critical temperatures, can be also brought in thermal equilibrium with the surrounding medium and form a quantum degenerate Bose-Einstein distribution. It happ
The finite-temperature linear response theory based on the finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model is developed in the charge-exchange channel to study the temperature evolution of spin-isospin excitations. Calculations are