ﻻ يوجد ملخص باللغة العربية
We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperins classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-eta/2cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.
A sharp peak in the $K^+/pi^+$ ratio in relativistic heavy-ion collision is discussed in the framework of the SU(3) Polyakov-loop extended NJL model with vector interaction. In the model, the $K^+/pi^+$ ratio was calculated along the chiral phase tra
We calculate the form factors of the electromagnetic nucleon-to-$Delta$-resonance transition to third chiral order in manifestly Lorentz-invariant chiral effective field theory. For the purpose of generating a systematic power counting, the complex-m
The structure of N(1535) is discussed in dynamical and symmetry aspects based on chiral symmetry. We find that the N(1535) in chiral unitary model has implicitly some components other than meson-baryon one. We also discuss the N(1535) in the chiral doublet picture.
We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinber
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s