ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino-nucleus cross-sections at supernova neutrino energies

78   0   0.0 ( 0 )
 نشر من قبل Mohammad Athar SAJJAD
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are performed in the local density approximation (LDA) taking into account the effects due to Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in the charged current reactions has also been included. The numerical results for the energy dependence of the cross-section $sigma(E)$ as well as the flux averaged cross-section and event rates for the charged lepton production in the case of some supernova neutrino/antineutrino fluxes recently discussed in the literature have been presented. We have also given the flux-averaged angular and energy distributions of the charged leptons corresponding to these fluxes.



قيم البحث

اقرأ أيضاً

We present neutrino capture cross sections on 13C at supernova neutrino energies, up to 50 MeV. For both charged-current and neutral-current reactions partial cross sections are calculated using statistical Hauser-Feschbach method. Coherent elastic n eutrino scattering cross section for a 13C target is also provided.
We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local de nsity approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $Delta $- dominance model taking into account the renormalization of $Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
We study charged-current neutrino cross sections on neutronrich nuclei in the mass $Asim60$ region. Special attention is paid to environmental effects, i.e. finite temperature and density, on the cross sections. As these effects are largest for small neutrino energies, it is sufficient to study only the Gamow-Teller (GT) contributions to the cross sections. The relevant GT strength distributions are derived from large-scale shell model calculations. We find that the low-energy cross sections are enhanced at finite temperatures. However, for $( u_e,e^-)$ reactions Pauli blocking of the electrons in the final state makes the cross sections for low-energy neutrinos much smaller than for the competing inelastic scattering on electrons at moderate and large densities. Absorption cross sections for low-energy antineutrinos are strongly enhanced at finite temperatures.
66 - Giampaolo Co 2006
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture da ta is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the reson ances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enhancement of low energy nucleons due to rescattering. At neutrino energies above 1 GeV, we also obtain that the contribution to nucleon knockout from Delta excitation is comparable to that from quasielastic scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا